Q. 01

The resistance of a wire is 5 ohm at 50°C and 6 ohm at 100°C. The resistance of the wire at 0°C will be [2007]

(a) 3 ohm (b) 2 ohm (c) 1 ohm (d) 4 ohm

Answer

(d) We know that $R_t = R_0(1 + \alpha t)$, where R_t is the resistance of the wire at $t \, {}^{\circ}C$, R_0 is the resistance of the wire at $0 \, {}^{\circ}C$ and α is the temperature coefficient of resistance. $\Rightarrow R_{50} = R_0(1 + 50 \, \alpha)$...(i) $R_{100} = R_0(1 + 100 \, \alpha)$...(ii) From (i), $R_{50} - R_0 = 50 \, \alpha R_0$... (iii)

From (ii), $R_{100} - R_0 = 100 \, \alpha R_0$... (iv) Dividing (iii) by (iv), we get $\frac{R_{50} - R_0}{R_{100} - R_0} = \frac{1}{2}$ Here, $R_{50} = 5\Omega$ and $R_{100} = 6\Omega$ $\therefore \frac{5 - R_0}{6 - R_0} = \frac{1}{2}$

or, $6 - R_0 = 10 - 2 R_0$ or, $R_0 = 4\Omega$.